High-Performance Composites

MAR 2013

High-Performance Composites is read by qualified composites industry professionals in the fields of continuous carbon fiber and other high-performance composites as well as the associated end-markets of aerospace, military, and automotive.

Issue link: https://hpc.epubxp.com/i/110847

Contents of this Issue


Page 49 of 67

Market outlook ed ramp-down of wind energy expansion in China have put a damper on things. Still, Red estimates that the wind energy sector consumed 15,000 metric tonnes (33 million lb) of carbon fiber in 2012 and is on track to demand 23,440 metric tonnes (51.6 million lb) in 2016 and 36,840 metric tonnes (81.2 million lb) in 2020. This more moderate prediction, if fulfilled, will keep wind energy in the top spot, by far, as the largest carbon fiber consumer in the world. But the numbers will fall short of previous expectations. In 2010, Red predicted the wind energy carbon fiber consumption at 64,000 metric tonnes (141 million lb) by 2019. A third indicator poses uncertainty for the carbon fiber market. Lockheed Martin's F-35 Lightning II fighter jet features an all-composite skin, but it has suffered delays and cost overruns that are suppressing the orders outlook. "We'll not see the annual unit production rates of even a few years ago," Red suggested at the conference. Making things interesting on the supply side is a host of new carbon fiber manufacturers, including Hyosung (pronounced source: composites forecasts and consulting LLc carbon fiber into high-volume automotive manufacturing for mainstream cars. Red pointed in particular to the BMW i3 all-electric, four-door passenger car, due out later this year at an estimated volume of 30,000 units per year. It features a first-of-its-kind carbon fiber passenger cell, the fiber for which is supplied by a BMW/SGL partnership that has constructed a purpose-built carbon fiber plant in Moses Lake, Wash. (see "Learn More," p. 52) Red noted at the conference that the BMW i3 "application has significant potential to be as large as aerospace for carbon fiber, if not larger." Next on the indicator list is wind energy, where carbon fiber's future is most uncertain. Carbon fiber is used primarily in large wind blades, and because this sector's growth focused increasingly on offshore wind farms, it seemed — as recently as a year ago — that wind blade manufacturers would gobble up carbon fiber in runaway amounts. Red noted, however, that the recent expiration of the wind energy production tax credit (PTC) in the U.S., with its renewal the morning after for a mere year, and a Beijing-dictat- Nameplate numbers estimated carbon fiber nameplate capacity by manufacturer through 2020. 48 | high-performance composites "cho-sung," Seoul, S. Korea), SABIC (Riyadh, Saudi Arabia), DowAksa (a joint venture of Dow Chemical, Midland, Mich., and AKSA, Istanbul, Turkey), Alabuga Fiber LLC (Moscow, Russia), Kemrock Industries (Gujarat, India) and the government of Iran. All of these new supply sources provide (or will soon provide) industrial-grade (standard- and intermediatemodulus) fiber intended for use in markets other than aerospace. Applications of industrial-grade fiber (>24K) are growing at a faster rate than those for high-modulus, aerospace-grade (3K-12K) product. New players are not expected to seriously challenge longtime producers in the short term. Toray (Tokyo, Japan) is expected, throughout the forecast, to remain the largest carbon fiber supplier, but Red showed a cluster of other suppliers vying for second place, including Zoltek (St. Louis, Mo.), Toho Tenax (Tokyo, Japan), Mitsubishi Rayon Co. Ltd. (Tokyo, Japan) and SGL Group (Wiesbaden, Germany). And by 2016, Red estimates, the two largest carbon fiber producers will be Toray and SGL Group. The confluence of new players and tempered demand has set up a likely surplus that will inevitably affect fiber pricing. "With this scenario," said Red, "I would think that, unless the market grows significantly faster than I have projected, this excess capacity will keep overall pricing very competitive and may force a shakedown of the supply chain. Wind energy obviously is a big contributor to near-term issues, and the current subsidy policies are creating artificial booms and busts in the system, in both the U.S. and China." Price and precursor Fiber pricing was a hot topic at Carbon Fiber 2012. Conference participants considered whether the industry can ever achieve the mythic $5/lb threshold that some would-be consumers of carbon fiber — among them, carmakers still reluctant to use carbon fiber in structural applications —  claim would open up a variety of new applications. For several years the belief has been that the industry can and should develop a less-expensive alternative to polyacrylonitrile (PAN) precursor, which makes carbon fiber notoriously expensive. Find a cheaper precursor, the thinking goes, and cheaper carbon fiber will result. Oak Ridge National Labora-

Articles in this issue

Archives of this issue

view archives of High-Performance Composites - MAR 2013